MesoBioNano (MBN) Explorer is a multi-purpose software package for advanced multiscale simulations of complex molecular structure and dynamics. It is suitable for the following computational tasks:

- Energy calculation
- Structure optimisation
- Molecular dynamics
- Euler rigid body dynamics
- Relativistic dynamics
- Kinetic Monte Carlo simulations
- Irradiation driven molecular dynamics

MBN Explorer features:

- Applicability to a broad range of MBN systems
- Universality
- MPI and OpenMP parallelisation
- Extendibility
- Convenient interface
- Compatibility with standard visualisation software

MBN Explorer includes a comprehensive database with examples of simulated molecular systems of various degree of complexity. They illustrate the implemented algorithms and serve as a convenient starting point for the practical work with the software.

Read more on: www.mbnresearch.com

IN SUMMARY

MesoBioNano (MBN) Explorer is a multi-purpose software package for advanced multiscale simulations of complex molecular structure and dynamics. It has many unique features and a wide range of applications in Physics, Chemistry, Biology, Materials Science, and Industry. A broad variety of algorithms and interatomic potentials implemented in the program allows simulations of structure and dynamics of a broad range of systems with the sizes from the atomic up to the mesoscopic scales.

MBN Explorer is being developed and distributed by MBN Research Center, which organises hands-on tutorials for the software, user’s workshops and conferences.

MBN Explorer contains a large library of model force fields and allows for their flexible use. The current release of MBN Explorer has been thoughtfully tested, benchmarked and proved to be reliable in calculations. The code is under continuous development by the joined participation of world class scientists and professional IT developers. The current release of **MBN Explorer** is the heritage of a long standing development. Being tested by several research groups worldwide, the molecular dynamics simulation software is described in detail in the article “**MBN Explorer - a universal program for multiscale computer simulations of complex molecular structure and dynamics**” published in Journal of Computational Chemistry 33 (2012) 2412, and in greater detail in the book “**Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer**” published by Springer in 2017, ISBN 978-3-319-56085-4.
MesoBioNano systems modelling with a single software

NOW ON WWW.MBNRESEARCH.COM

Computational Physics at the Life Science interface: MesoBioNano Science
Computational Physics, Chemistry and Biology
Computational Materials Science
High Performance Computing

COMPATIBLE WITH

- MICROSOFT WINDOWS
- LINUX
- MAC OS X

Longstanding development now available for the community

ACADEMIC LICENSING

The use of **MBN Explorer** for non-commercial purpose is granted through low price academic licenses. This licensing agreement is restricted to Universities and Research Centers aiming for scientific publication of their results. Reference to **MBN Explorer** in reports, publications, or communication mentioning research results obtained with the use of **MBN Explorer** is required. All details about terms and conditions are available on www.mbnresearch.com.

ENTERPRISE LICENSING

Accessible individual and multi-users license agreements are offered for commercial exploitation of MBN Explorer. Purchased license rights provide access to:

- **MBN Explorer** software and its updates
- **MBN Explorer** documentation package
- **MBN Explorer** user’s workshops

Special packages including education, dedicated hands-on training and helpdesk are also available. Contact us or visit our website www.mbnresearch.com for more details.

BIOMOLECULAR SYSTEMS

- Structure of biomolecules
- Biomolecular complexes
- Bio-nano systems
- Structural transitions, biomolecular processes
- Dynamics of DNA, RNA and proteins
- Multiscale modelling

NANOSTRUCTURED MATERIALS

- Metallic, organic, inorganic, and biomolecular nanomaterials
- Crystalline superlattices of nanoparticles
- Nanofilms
- Self-assembly and growth
- Nanoscale phase and structural transitions

COMPOSITE MATERIALS AND MATERIAL INTERFACES

- Nanoalloys and composites
- Material interfaces
- Functional nanoparticles and surface coatings
- Nanofractals, nanowires
- Deposition, diffusion and surface pattern formation, morphological transitions

THERMO-MECHANICAL PROPERTIES OF MATERIALS

- Thermo-mechanical properties
- Tribological properties
- Nanoindentation, scratching
- Elastic and plastic deformations
- Dynamics of dislocations
- Nanoscale phase and structural transitions

COLLISIONS AND REACTIONS

- Collision processes involving clusters, nanoparticles and biomolecules
- Molecular association, dissociation, reactions
- Collision induced chemistry
- Particles propagation through a medium
- Collision induced medium effects

NOVEL TECHNOLOGIES

- Biomedical applications driven by irradiation, nanoprocesses and technologies
- Surface deposition processes
- Crystalline undulator-based novel light sources
- Virtual design of materials
- Computational nano- and microscope