Ilia A. Solov’yov
Department of Physics, Chemistry and Pharmacy
University of Southern Denamrk
Odense, Denmark

Gennady Sushko
MBN Research Center gGmbH
Frankfurt, Germany

Andrey V. Solov’yov
MBN Research Center gGmbH
Frankfurt, Germany

MesoBioNano Science Publishing
© MBN Research Center gGmbH 2017. All rights reserved.

This book is subject to a copyright agreement, where the Publisher reserves the
rights of translation, copying, reprinting, advertising and reproduction of the whole
book or its parts by physical, electronic or similar methodology developed by today
or hereafter.

The use of specific and general terms, abbreviates, descriptive and registered names,
trade and service marks, included in this book does not imply that such names
are exempt from the relevant protective laws and regulations and therefore free
for general use. The responsibility to inquire about such possibility is with the
individual customer.

The information provided in this book is true and accurate to the best knowledge
of the publisher and the authors at the date of the publication. The publisher and
the authors do not provide any warranty with respect to the material contained in
this book or for any error or omissions that may have been made. The publisher
and the authors do not take responsibility for any damages related to the use of the
material contained in this book. The publisher remains neutral with regard to any
jurisdictional claims in published maps and institutional affiliations.

The registered company is MBN Research Center gGmbH.
The company address is Altenhöferallee 3, 60438 Frankfurt am Main, Germany.
Preface

The MBN Explorer Users’ Guide describes how to install and to run MBN Explorer, the software package for advanced multiscale simulations of complex molecular structure and dynamics. This guide includes the description of the main features and the algorithms of the program, the manual how to use the program for specific tasks, the description of all the program commands and keywords, the specification of input information, parameters, files and formats, and instructions on how to handle the program on Windows, Linux/Unix and Macintosh platforms.

MesoBioNano (MBN) Explorer is a multi-purpose software package for advanced multiscale simulations of complex molecular structure and dynamics. It has many unique features and a wide range of applications in Physics, Chemistry, Biology, Materials Science, and Industry. A broad variety of algorithms and interatomic potentials implemented in the program allows simulations of structure and dynamics of a broad range of systems with the sizes from the atomic up to the mesoscopic scales.

MBN Explorer is being developed and distributed by MBN Research Center, www.mbnresearch.com, which organises hands-on tutorials for the software, user’s workshops and conferences.

The use of MBN Explorer for non-commercial purpose is granted through low price academic licenses. This licensing agreement is restricted to Universities and Research Centers aiming for scientific publication of their results. Reference to MBN Explorer in reports, publications, or communication mentioning research results obtained with the use of MBN Explorer is required. All details about terms and conditions are available on www.mbnresearch.com.

Accessible individual and multi-users license agreements are also offered for commercial exploitation of MBN Explorer.

Purchased license rights provide access to

- MBN Explorer software and its updates,
- MBN Explorer documentation package,
- MBN Explorer user’s workshops.

Special packages including education, dedicated hands-on training and helpdesk are also available. Contact us or visit our website www.mbnresearch.com for more details.
Contents

1 Introduction

1.1 Features of MBN EXPLORER 1
1.2 MBN EXPLORER functionality 3
1.3 Historical remarks ... 5
1.4 Terms and conditions 9
1.5 Third party terms and conditions 19
 1.5.1 VMD molfile plugin 19
 1.5.2 Mersenne twister 20
 1.5.3 Kiss FFT .. 20

2 Getting Started

2.1 What is needed .. 23
2.2 MBN EXPLORER task file 23
 2.2.1 Task file syntax 24
 2.2.2 Required parameters 24
2.3 MBN EXPLORER task parameters 24
 2.3.1 General parameters 24
 2.3.2 Input files .. 26
 2.3.3 Output files and related parameters 27
 2.3.4 General numerical methods for interatomic interactions .. 32
 2.3.5 Ewald summation method for Coulomb interactions .. 35
 2.3.6 Fast particle mesh Ewald algorithm 36
 2.3.7 General molecular dynamics simulation 38
 2.3.8 Temperature control 39
 2.3.9 Relativistic integrator related options 40
 2.3.10 Molecular mechanics and chemical reactions 40
 2.3.11 Structure optimization 41
 2.3.12 Random walk dynamics 43
2.3.13 Radiation spectrum calculation
2.3.14 Multithreading
2.4 Executing program
 2.4.1 Setting a calculation
 2.4.2 License key usage
 2.4.3 Automated testing
 2.4.4 Binary version number

3 Input and Output Files
 3.1 Input files
 3.1.1 MBN EXPLORER structure file
 3.1.2 PDB file
 3.1.3 Topology file
 3.1.4 MBN EXPLORER potential file
 3.1.5 Lammps tabulated potential file
 3.1.6 CHARMM force field potential file
 3.1.7 Dissociative CHARMM molecular mechanics potential
 3.1.8 System manipulation file
 3.1.9 Chemical rules file
 3.1.10 Spectrum calculation files
 3.2 Output files
 3.2.1 Output file
 3.2.2 Log-file
 3.2.3 Trajectory file
 3.2.4 Chemical statistics file
 3.2.5 Spectrum calculation files

4 Energy and Force Calculation
 4.1 Pairwise potentials
 4.1.1 Power potential
 4.1.2 Exponential potential
 4.1.3 Coulomb potential
 4.1.4 Soft Coulomb potential
 4.1.5 Lennard-Jones potential
 4.1.6 Morse potential
 4.1.7 Girifalco potential
 4.1.8 Dzugutov potential
 4.1.9 Quasi Sutton-Chen potential
 4.1.10 Yukawa potential
 4.1.11 Moliere potential
 4.1.12 Pacios potential
 4.2 Many-body potentials
 4.2.1 Sutton-Chen potential
1.2.2 Gupta potential ... 113
1.2.3 Finnis-Sinclair potential 115
1.2.4 Brenner potential ... 117
1.2.5 Tersoff potential .. 121
1.2.6 Stillinger-Weber potential 126
1.2.7 Tabulated EAM potential 127
1.2.8 Ziegler Biersack Littmark potential 128

1.3 Molecular mechanics potential 128

1.4 Rupture of valence bonds 135
1.4.1 Rupture of covalent bonds 136
1.4.2 Rupture of valence angles 138
1.4.3 Rupture of dihedral interactions 140

1.5 External potentials ... 142
1.5.1 Constant electric field 143
1.5.2 Visous force .. 144
1.5.3 Constant gravity field 144

2 Molecular Dynamics Simulations 145
2.1 The equations of motion 146
2.1.1 Newton equations .. 146
2.1.2 Relativistic equations of motion 147
2.1.3 Euler equations ... 147
2.1.4 The quaternions with an application to rigid body dynamics 151

2.2 Integration algorithms ... 153
2.2.1 Velocity Verlet integrator 153
2.2.2 Leapfrog integrator 158
2.2.3 Runge-Kutta integrator for relativistic equations of motion 159

2.3 Setting random initial velocities 160

2.4 Energy control .. 161

2.5 Temperature control ... 162
2.5.1 Velocity scaling (Berendsen thermostat) 163
2.5.2 Langevin thermostat 163

2.6 Momentum and angular momentum control 164

2.7 User-defined particle manipulation 165

2.8 Irradiation Driven Molecular Dynamics 166

2.9 Simulation of chemical reactions 168

3 Numerical Methods for Interatomic Interactions 171
3.1 Basic interaction approach 172
3.2 Linked cell interaction approach 174

3.3 Boundary conditions ... 177
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.3.1</td>
<td>Reflective boundary conditions</td>
<td>177</td>
</tr>
<tr>
<td>6</td>
<td>6.3.2</td>
<td>Periodic boundary conditions</td>
<td>181</td>
</tr>
<tr>
<td>6</td>
<td>6.3.3</td>
<td>Dynamic boundary conditions</td>
<td>183</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>Calculation of Coulomb interactions</td>
<td>184</td>
</tr>
<tr>
<td>6</td>
<td>6.4.1</td>
<td>Ewald summation for long range interactions</td>
<td>186</td>
</tr>
<tr>
<td>6</td>
<td>6.4.2</td>
<td>Ewald summation formula</td>
<td>187</td>
</tr>
<tr>
<td>6</td>
<td>6.4.3</td>
<td>Fast particle mesh Ewald (PME) summation algorithm</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Energy Minimization Techniques</td>
<td>193</td>
</tr>
<tr>
<td>7</td>
<td>7.1</td>
<td>Velocity quenching</td>
<td>194</td>
</tr>
<tr>
<td>7</td>
<td>7.2</td>
<td>Conjugate gradient method</td>
<td>196</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>Particle random walk dynamics</td>
<td>201</td>
</tr>
<tr>
<td>8</td>
<td>8.1.1</td>
<td>Conventional KMC algorithm</td>
<td>202</td>
</tr>
<tr>
<td>8</td>
<td>8.1.2</td>
<td>Computational core of random walk dynamics</td>
<td>202</td>
</tr>
<tr>
<td>8</td>
<td>8.1.3</td>
<td>Particle dynamics on a lattice</td>
<td>204</td>
</tr>
<tr>
<td>8</td>
<td>8.1.4</td>
<td>Accounting for interparticle interactions</td>
<td>204</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Radiation spectrum calculation</td>
<td>209</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>General theory</td>
<td>209</td>
</tr>
<tr>
<td>9</td>
<td>9.2</td>
<td>Calculation of Spectral-Angular Distribution</td>
<td>211</td>
</tr>
<tr>
<td>9</td>
<td>9.3</td>
<td>Calculation of Spectral Distribution</td>
<td>213</td>
</tr>
<tr>
<td>9</td>
<td>9.4</td>
<td>Running calculation</td>
<td>213</td>
</tr>
<tr>
<td>10</td>
<td>10.1</td>
<td>OpenMP Multithreading</td>
<td>215</td>
</tr>
<tr>
<td>10</td>
<td>10.2</td>
<td>MPI parallelization</td>
<td>216</td>
</tr>
<tr>
<td>10</td>
<td>10.2.1</td>
<td>Running MBN Explorer on cluster computers</td>
<td>216</td>
</tr>
<tr>
<td>10</td>
<td>10.3</td>
<td>Combining MPI and OpenMP parallelization techniques</td>
<td>218</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>System Specification Examples</td>
<td>221</td>
</tr>
<tr>
<td>A</td>
<td>A.1</td>
<td>Energy calculation of a noble gas cluster</td>
<td>221</td>
</tr>
<tr>
<td>A</td>
<td>A.2</td>
<td>Molecular dynamics simulation of fullerene melting</td>
<td>222</td>
</tr>
<tr>
<td>A</td>
<td>A.3</td>
<td>Molecular dynamics simulation of alanine dipeptide</td>
<td>224</td>
</tr>
<tr>
<td>A</td>
<td>A.4</td>
<td>Coronene dimer optimization</td>
<td>227</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Utility Programs</td>
<td>231</td>
</tr>
<tr>
<td>B</td>
<td>B.1</td>
<td>Visualizing results</td>
<td>231</td>
</tr>
<tr>
<td>B</td>
<td>B.1.1</td>
<td>MBN Studio</td>
<td>231</td>
</tr>
<tr>
<td>B</td>
<td>B.1.2</td>
<td>VMD</td>
<td>232</td>
</tr>
<tr>
<td>B</td>
<td>B.1.3</td>
<td>Chemcraft</td>
<td>232</td>
</tr>
</tbody>
</table>
C Parameters for Some Interatomic Interactions 235
 C.1 Noble gas atoms 235
 C.2 Metal atoms 235
 C.3 Carbon-based materials 237
 C.4 Biological molecules 238
 C.5 Conversion factors 239

Bibliography 241

Index 250